3.61 \(\int \frac {(c x)^m (A+B x+C x^2)}{a+b x^2} \, dx\)

Optimal. Leaf size=121 \[ \frac {(c x)^{m+1} (A b-a C) \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};-\frac {b x^2}{a}\right )}{a b c (m+1)}+\frac {B (c x)^{m+2} \, _2F_1\left (1,\frac {m+2}{2};\frac {m+4}{2};-\frac {b x^2}{a}\right )}{a c^2 (m+2)}+\frac {C (c x)^{m+1}}{b c (m+1)} \]

[Out]

C*(c*x)^(1+m)/b/c/(1+m)+(A*b-C*a)*(c*x)^(1+m)*hypergeom([1, 1/2+1/2*m],[3/2+1/2*m],-b*x^2/a)/a/b/c/(1+m)+B*(c*
x)^(2+m)*hypergeom([1, 1+1/2*m],[2+1/2*m],-b*x^2/a)/a/c^2/(2+m)

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {1802, 808, 364} \[ \frac {(c x)^{m+1} (A b-a C) \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};-\frac {b x^2}{a}\right )}{a b c (m+1)}+\frac {B (c x)^{m+2} \, _2F_1\left (1,\frac {m+2}{2};\frac {m+4}{2};-\frac {b x^2}{a}\right )}{a c^2 (m+2)}+\frac {C (c x)^{m+1}}{b c (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[((c*x)^m*(A + B*x + C*x^2))/(a + b*x^2),x]

[Out]

(C*(c*x)^(1 + m))/(b*c*(1 + m)) + ((A*b - a*C)*(c*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x
^2)/a)])/(a*b*c*(1 + m)) + (B*(c*x)^(2 + m)*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, -((b*x^2)/a)])/(a*c^2*(
2 + m))

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 808

Int[((e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[f, Int[(e*x)^m*(a + c*
x^2)^p, x], x] + Dist[g/e, Int[(e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, p}, x] &&  !Ration
alQ[m] &&  !IGtQ[p, 0]

Rule 1802

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x
^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rubi steps

\begin {align*} \int \frac {(c x)^m \left (A+B x+C x^2\right )}{a+b x^2} \, dx &=\int \left (\frac {C (c x)^m}{b}+\frac {(c x)^m (A b-a C+b B x)}{b \left (a+b x^2\right )}\right ) \, dx\\ &=\frac {C (c x)^{1+m}}{b c (1+m)}+\frac {\int \frac {(c x)^m (A b-a C+b B x)}{a+b x^2} \, dx}{b}\\ &=\frac {C (c x)^{1+m}}{b c (1+m)}+\frac {B \int \frac {(c x)^{1+m}}{a+b x^2} \, dx}{c}+\frac {(A b-a C) \int \frac {(c x)^m}{a+b x^2} \, dx}{b}\\ &=\frac {C (c x)^{1+m}}{b c (1+m)}+\frac {(A b-a C) (c x)^{1+m} \, _2F_1\left (1,\frac {1+m}{2};\frac {3+m}{2};-\frac {b x^2}{a}\right )}{a b c (1+m)}+\frac {B (c x)^{2+m} \, _2F_1\left (1,\frac {2+m}{2};\frac {4+m}{2};-\frac {b x^2}{a}\right )}{a c^2 (2+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 99, normalized size = 0.82 \[ \frac {x (c x)^m \left ((m+2) (A b-a C) \, _2F_1\left (1,\frac {m+1}{2};\frac {m+3}{2};-\frac {b x^2}{a}\right )+b B (m+1) x \, _2F_1\left (1,\frac {m}{2}+1;\frac {m}{2}+2;-\frac {b x^2}{a}\right )+a C (m+2)\right )}{a b (m+1) (m+2)} \]

Antiderivative was successfully verified.

[In]

Integrate[((c*x)^m*(A + B*x + C*x^2))/(a + b*x^2),x]

[Out]

(x*(c*x)^m*(a*C*(2 + m) + b*B*(1 + m)*x*Hypergeometric2F1[1, 1 + m/2, 2 + m/2, -((b*x^2)/a)] + (A*b - a*C)*(2
+ m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -((b*x^2)/a)]))/(a*b*(1 + m)*(2 + m))

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (C x^{2} + B x + A\right )} \left (c x\right )^{m}}{b x^{2} + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^m*(C*x^2+B*x+A)/(b*x^2+a),x, algorithm="fricas")

[Out]

integral((C*x^2 + B*x + A)*(c*x)^m/(b*x^2 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C x^{2} + B x + A\right )} \left (c x\right )^{m}}{b x^{2} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^m*(C*x^2+B*x+A)/(b*x^2+a),x, algorithm="giac")

[Out]

integrate((C*x^2 + B*x + A)*(c*x)^m/(b*x^2 + a), x)

________________________________________________________________________________________

maple [F]  time = 0.07, size = 0, normalized size = 0.00 \[ \int \frac {\left (C \,x^{2}+B x +A \right ) \left (c x \right )^{m}}{b \,x^{2}+a}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^m*(C*x^2+B*x+A)/(b*x^2+a),x)

[Out]

int((c*x)^m*(C*x^2+B*x+A)/(b*x^2+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C x^{2} + B x + A\right )} \left (c x\right )^{m}}{b x^{2} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^m*(C*x^2+B*x+A)/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate((C*x^2 + B*x + A)*(c*x)^m/(b*x^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c\,x\right )}^m\,\left (C\,x^2+B\,x+A\right )}{b\,x^2+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((c*x)^m*(A + B*x + C*x^2))/(a + b*x^2),x)

[Out]

int(((c*x)^m*(A + B*x + C*x^2))/(a + b*x^2), x)

________________________________________________________________________________________

sympy [C]  time = 7.60, size = 298, normalized size = 2.46 \[ \frac {A c^{m} m x x^{m} \Phi \left (\frac {b x^{2} e^{i \pi }}{a}, 1, \frac {m}{2} + \frac {1}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{4 a \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} + \frac {A c^{m} x x^{m} \Phi \left (\frac {b x^{2} e^{i \pi }}{a}, 1, \frac {m}{2} + \frac {1}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {1}{2}\right )}{4 a \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )} + \frac {B c^{m} m x^{2} x^{m} \Phi \left (\frac {b x^{2} e^{i \pi }}{a}, 1, \frac {m}{2} + 1\right ) \Gamma \left (\frac {m}{2} + 1\right )}{4 a \Gamma \left (\frac {m}{2} + 2\right )} + \frac {B c^{m} x^{2} x^{m} \Phi \left (\frac {b x^{2} e^{i \pi }}{a}, 1, \frac {m}{2} + 1\right ) \Gamma \left (\frac {m}{2} + 1\right )}{2 a \Gamma \left (\frac {m}{2} + 2\right )} + \frac {C c^{m} m x^{3} x^{m} \Phi \left (\frac {b x^{2} e^{i \pi }}{a}, 1, \frac {m}{2} + \frac {3}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )}{4 a \Gamma \left (\frac {m}{2} + \frac {5}{2}\right )} + \frac {3 C c^{m} x^{3} x^{m} \Phi \left (\frac {b x^{2} e^{i \pi }}{a}, 1, \frac {m}{2} + \frac {3}{2}\right ) \Gamma \left (\frac {m}{2} + \frac {3}{2}\right )}{4 a \Gamma \left (\frac {m}{2} + \frac {5}{2}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**m*(C*x**2+B*x+A)/(b*x**2+a),x)

[Out]

A*c**m*m*x*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(4*a*gamma(m/2 + 3/2)) + A*c
**m*x*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 1/2)*gamma(m/2 + 1/2)/(4*a*gamma(m/2 + 3/2)) + B*c**m*m
*x**2*x**m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 1)*gamma(m/2 + 1)/(4*a*gamma(m/2 + 2)) + B*c**m*x**2*x*
*m*lerchphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 1)*gamma(m/2 + 1)/(2*a*gamma(m/2 + 2)) + C*c**m*m*x**3*x**m*ler
chphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 3/2)*gamma(m/2 + 3/2)/(4*a*gamma(m/2 + 5/2)) + 3*C*c**m*x**3*x**m*ler
chphi(b*x**2*exp_polar(I*pi)/a, 1, m/2 + 3/2)*gamma(m/2 + 3/2)/(4*a*gamma(m/2 + 5/2))

________________________________________________________________________________________